

"Integrated" Agriculture as a Base for High Density Renewable Fuels in Hawai`i

Paul S. Zorner, Ph.D.

Chief Executive Officer & President

April 6, 2010

Hawai'i BioEnergy:

A Coalition to Support the Economic, Environmental and Community Integrity of Hawai'i through Improved Energy Security and Contributions to a Green Economy

Maui Land and Pineapple, Inc.

Khosla Ventures

khosla ventures

Ohana Holdings

Ohana Holdings

Finistere Partners

Kamehameha Schools

Grove Farm

"Local Business, Local Growth, Local Self-Sufficiency"

Renewable Energy: Constructing the Value Chain Forming alliances is key to economic productivity

Hawai'i Energy and Food Challenges

- ☐ Relatively small and isolated parcels of land present logistical and scale challenges
- ☐ Align form of energy with local demand
 - ☐ 450 million gallons gasoline (45 million gallons ethanol)
 - ☐ 600 million gallons jet, diesel and other high density distillates (transportation, power)
- ☐ Fill gaps in the local agricultural value chain
 - >animal feed to support local meat and milk production

Corporate Value Chain

Land, Diversified Ag, Biomass Transformation Distribution to Market

- Sustainable practices
- Diversified crops
- Efficient water management
- Increased land productivity
- "Recycle" waste streams
- Global best practices
- Food and Fuel

- Proper alliances
- Fuel that utilizes existing infrastructure
- Department of Defense
- Electric Utilities
- Transportation

Increased Land Productivity through Innovation and Integration ("per acre back of the envelop estimates")

Current	Current
Sugar Focus	Energy Focus
7-8 tons sugar5000 kwh power1 unit CO₂	 1025 gallons ethanol 5500 kwh power 1.5 units CO₂

New Crop Cultivars: Changing Goals Allows us to Change Tools Energy Cane vs Conventional Cane

•Energy Cane data courtesy of Fernando Reinach, Canavialis – Brazil

Photos courtesy of CERES and Texas A&M University

Fraction	Conventional Sugarcane tons/acre (DW)	Energy Cane tons/acre* (DW)
Sucrose	7.5	9.4
Fiber	7.5	17.0
Total	15.0	26.4

- ➤ new hybrid Sorghum varieties (eg. CERES Thousand Oaks, CA and Texas A&M, College Station, Texas)
- ➤ Sorghum uses 30% less water per ton of biomass produced than sugarcane

Consolidating Technology Improves Economics of EtOH production from Sugarcane

... and remarkably increases land productivity "Back of the Envelope" Calculations

- 25 million gallon target
- Assume initial ~50 tons cane/acre
- EtOH and power only facility
- Energy cane or new Hybrid Sweet Sorghum varieties
- Advanced Processing

Case	EtOH (gal/acre)	Land Required (acres)	Fiber (tons/acre)
Base	1025	24,500	7.5
Hi-Fiber	1290	19,200	17.0
HF + Advanced Processing	2500*	10,000	

^{*} Not all fiber to sugar, some retained for power production

Consolidating Technology Improves Economics of High Density Fuel production from Sugarcane

... and remarkably increases land productivity "Back of the Envelope" Calculations

- 25 million gallon target
- Assume initial ~50 tons cane/acre
- Fuel and power only facility
- Energy cane varieties
- Advanced Processing

Case	High Density Fuels (gal/acre)	Land Required (acres)	Fiber (tons/acre)
Base	625	24,500	7.5
Hi-Fiber	790	19,200	17.0
HF + Advanced Processing	1700*	10,000	

^{*} Not all fiber to fuel, some retained for power production

"Refocusing" Agriculture: The base for a sustainable, economic and secure Hawai`i ("back-of-the-envelope" estimates)

- 625 gallons renewable diesel
- 5500 kwh of power

50 tons of cane/acre produces 15.2 tons CO2/acre on processing

One metric ton of algae

15.2 tons CO2 produces 5 tons of algae

- 5 tons of algae/acre
 - 300 650 gallons of oil
 - 1.3 tons of protein
 - 1.3 tons of biomass (=4.3 tons whole cane = 573 kwh of power
- Algae ponds ~10% of land available for cane or sorghum

Increased Land Productivity through Innovation and Integration ("per acre back of the envelop estimates")

Current Sugar Focus	Current Energy Focus	Future Energy Focus with advanced varieties and advanced processing	Future Energy Focus with advanced varieties and advanced processing integrated with algae
 7-8 tons sugar 5000 kwh power 1unit CO₂ 	 1025 gallons ethanol 5500 kwh power 1.5 units CO₂ 	 ~1700 gallons of high density fuel 5500 kwh power 2.5 units of CO₂ 	 ~1700 gallons of high density fuel 5500 kwh power 650 gallons oil 1.5+ tons protein

Agriculture can Contribute to Energy and Food Security in Hawai`i

- ➤ Land base is fragmented but we have remarkably productive soils and climate
- ➤ Integration of technical innovations and aligned partnerships across the value chain can support significant volumes of fuel and animal feed production

- Sustainable practices
- Diversified Crops
- Efficient water management
- Increased productivity
- "Recycle" waste streams
- Global best practices
- Food and Fuel

- Proper alliances
- Fuel that uses existing infrastructure
- Department of Defense
- Electric Utilities
- Transportation

Integrated Biorefinery

Green Cane harvesting produces up to 30% more usable biomass